Boolean-valued logic and the theory of the algebraic integers

1. BOOLEANIZATION

1.1. Boolean algebras. A compact Hausdorff space X is called zerodimensional or totally disconnected if it has a basis of clopen sets. In this case, the clopen subsets from a Boolean algebra B, and the points of X can be identified with homomorphisms $B \to \{0, 1\}$ (namely x maps b to 1 iff $x \in b$.)

A *pointed Boolean algebra* is a Boolean algebra with a distinguished maximal ideal, given by a unary predicate.

Definition 1.2. The theory BA of *atomless Boolean algebras*: is the theory BA of Boolean algebras along with 1 > 0 and

$$(\forall x \in B)(x > 0 \implies (\exists y)(x > y > 0))$$

Definition 1.3. The theory \widetilde{BA}_{∞} of atomless Boolean algebras with distinguished maximal ideal has the language of Boolean algebras with an additional unary predicate I_{∞} ; the axioms are \widetilde{BA} along with: I_{∞} is a maximal ideal.

A model of BA_{∞} corresponds to a totally disconnected compact space without isolated points and with one distinguished point.

Like BA, BA_{∞} is complete, and eliminates quantifiers. It is the modelcompletion of the theory BA_{∞} of pointed Boolean algebras. The main point to check is the amalgamation property for *finite* Boolean-algebras-withdistinguished-maximal ideal. Dualizing, this amounts to the co-amalgamation property - existence of fiber products - for *finite* pointed compact spaces, i.e. for for finite pointed sets. This is straightforward.

1.4. Booleanization. Let T be a theory in a language L. We will assume (without any real loss of generality) that T admits elimination of quantifiers.

1.5. Language of T_{bool} . Let L_{bool} be a language with the sorts of L and one additional sort B. (For simplicity we will use notation as if L has a single sort K.) On B we have the operations of a Boolean algebra, and the equality relation. In addition, for any formula $\phi(x_1, \ldots, x_n)$ of L, we have a function symbol $[\phi] : K^n \to B$ with the same variables. We view $[\phi]$ as giving the Boolean truth value of ϕ .

1.6. Axioms of T_{bool} .

- (1) B is a Boolean algebra.
- (2) If $T \models (\forall x)\phi$, then $[\phi(a)] = 1$.
- (3) For any $a, \phi \mapsto [\phi](a)$ is a Boolean homomorphism.
- (4) Assume $T \vdash \psi_i(y) \implies (\exists x)\phi_i(x,y), i = 1, \dots, n$. Then

$$(\forall b_1, \dots, b_n) (\bigwedge_{i \neq j} b_i \cap b_j = 0 \& \bigwedge [\psi_i(y)] \ge b_i \implies (\exists x) \bigwedge_i [\phi_i(x, y)] \ge b_i$$

1.7. Discussion.

- (1) (1-3) are universal axioms. (4) contains the AE axioms. For n = 1 it is a *local-global* principle: fixing a, if there is no local obstruction (at some point of X) to the existence of b with $\phi(a, b)$, then such a b actually exists. In addition, we have a *glueing principle* over disjoint b_1, \ldots, b_n .
- (2) As a special case of (4), for any formula $\phi(x)$, then the image of the function $\{b : [(\forall x)\phi] \le b \le [(\exists x)\phi]\}$. Assume $T \models (\exists x)(\exists y)(x \ne y)$; applying this for formulas with parameters, namely to x = a, we have $B = \{[c = a] : c \in K\}$.
- (3) Let $M \models T_{bool}$. Given a Boolean homomorphism $f : B \to \{0, 1\}$, we can define a structure M_x such that $M_x \models T$ for all $x \in Hom(B, \{0, 1\})$; the interpretation of ϕ is $x([\phi])$.
- (4) If $M \models T_{bool}$, then M is determined as a structure by B and the values of $[\phi]$ for atomic formulas ϕ . Indeed by (4), $[(\exists x)\phi(x,b)]$ is the least upper bound in B of $\{[\phi(a,b)] : a \in M\}$.

Remark 1.8. When ϕ is a sentence, $[\phi]$ is a new constant symbol in the sort *B*. We call these the *characteristic constants*.

The quantifier-elimination axioms of T easily translate via 1.6 (4) to quantifierelimination axioms for T_{bool} :

Lemma 1.9. Assume T eliminates quantifiers over some sort K; Then T_{bool} eliminates K- quantifiers.

If T eliminates all quantifiers, then T_{bool} is complete modulo the theory of B in the language of Boolean algebras with additional constants (namely the characteristic constants from 1.8).

Exercise 1.10. Let X be a topological space.

- (1) Define the notion of a *sheaf of L-structures*.
- (2) Let $M \models T_{bool}$, with Boolean algebra *B*. Let *X* be the Stone space of *B*. For $p \in X$, let M_p be the two-valued model corresponding to *p*. Show that this is a sheaf of *L*-structures, such that every stalk is a model of *T*.
- (3) Conversely, assume X is totally disconnected and A is a sheaf of L-structures, such that every stalk M_p is a model of T. Let M be the set of global sections. For an L-formula ϕ , define $[\phi] = \{p : M_p \models \phi\}$. Show that this is a model of T_{bool} .

Example 1.11 (lattice-ordered groups.). Let L = (0, +, <) the language of ordered Abelian groups, and let DOA be the theory of divisible ordered Abelian groups. A a divisible ordered Abelian group. Let X be the Stone space of B, and let , $A_B = C(X, M)$ be the set of continuous functions $X \to A$ (with A viewed as discrete.) We define: $f \leq g$ iff $f(x) \leq g(x)$ for all x. Similarly define +, 0. Let $[\phi(a_1, \ldots, a_n)] = \{x : A \models \phi(a_1(x), \ldots, a_n(x))\}$. Then $(A_B, B) \models DOA_{bool}$.

 $\mathbf{2}$

Exercise 1.12. In particular A_B as a partially ordered Abelian group is interpretable in DOA_{bool} . Conversely show that B and the structure (A_B, B) can be interpreted in A_B .

Exercise 1.13. ACF_{bool} is (equivalent to) the theory of algebraically closed commutative rings with no nonzero nilpotent elements. Explain.

1.14. A pointed / locally compact variant. A variant corresponding to a *locally compact space* Y. We can let $X = Y \cup \{\infty\}$ be the 1-point compactification. We may wish to specify that a specified extension T_{∞} holds at ∞ .

Assume now given a specified competion T_{∞} of T is given.

1.15. Axioms of $T_{bool,\infty}$. $L_{bool,\infty}$ consists of L_{bool} along with a distinguished maximal ideal I_{∞} of B. We let $T_{bool,\infty} = T_{bool} + [\neg \phi] \in I$ for all quantifier-free ϕ such that $T_{\infty} \vdash \phi$.

Exercise 1.16. $T_{bool,\infty}$ eliminates K-quantifiers. It is complete modulo the theory of B in the language of Boolean algebras with a distinguished maximal ideal I and additional constants (namely the characteristic constants from 1.8 (1)).

2. BOOLEANIZATION RELATIVE TO A SUBLANGUAGE

Let T be a theory in a language L, with a distinguished sublanguage $L_!$. Let $T_! = T|L_!$.

Assume T admits elimination of quantifiers.

We define the Booleanization relative to L_1 where the formulas of L_1 remain absolute. A model will be a model of T_1 and a sheaf of expansions of M to a model of T, over a compact zero-dimensional space X.

Remark 2.1. When the equality symbol is in L but not in L_1 , an expansion of a model S of L_1 should be understood to include the interpretation E of equality; i.e. the universe of the expansion is S/E for an appropriate congruence E, rather than S itself. This is the case in the construction of ultraproducts, and in the sheafification over \emptyset considered above. However, in the case of main interest to us equality does lie in L_1 .

2.2. Quantifiers over finite sets. The local-global axiom 2.4(5) is usually unreasonable for *finite* definable sets. For instance $RCF \models (\exists x)(x^2 = 2\&x > 0)$. Let $L = \mathbb{Q}[\sqrt{2}], X = Hom(L, \mathbb{R})$, and for a formula ϕ in the language of ordered rings, let $[\phi] = \{x \in X : \mathbb{R} \models \phi^x\}$. In L there exists a square root a of 2, but [a > 0], [a < 0] form a partition of unity in the Boolean algebra; in no field extension of L can there exist an element a with [a > 0] = 1.

This will force us to accept *bounded quantifers*; quantifiers of the form $(\exists x)(\phi_!(x, y)\&\psi(x, y))$, where ϕ is a formula of $L_!$ with finitely many solutions in each x (for each y.)

In the case that $T_!$ is a theory of fields, one can reduce to $(\exists x)(f(x,y) = 0\&\psi(x,y))$, where f is a monic polynomial in one variable x, whose coefficients are definable functions of y. If the coefficients can be taken to be *rational* functions of y (piecewise in y), we say that the theory is *algebraically bounded*.

In certain situations, it is possible to reduce all other quantifiers to bounded quantifiers. The idea is due to Ax, in the setting of pseudo-finite fields. We need to assume that definable sets of T_1 decompose into finite ones and *irreducible* ones, and the irreducible ones carry definable types, given uniformly in the parameters.

For definiteness, we will just consider strongly minimal irreducible sets.

Let us assume a family Φ of formulas $\phi(x, y)$ of L_1 is given, where x, y are tuples of variables. (In practice these will be the absolutely irreducible affine curves.) We will write $D \in \Phi(M)$ if $D = \{x : \phi(x, b)\}$ for some b from M. Assume, in any model $M \models T$ and $D \in \Phi(M)$:

2.3. Properties of irreducible definable sets of L_1 .

- (1) (algebraic boundedness) If $F = \{x \in D : \phi(x, c)\}$ is finite, then for some $\psi(x, y) \in L_1, \psi(x, c)$ is finite and contains F.
- (2) D is strongly minimal in T₁. I.e. for $\phi \in L_1$, $\{x \in D : \phi(x, c)\}$ is finite or cofinite.
- (3) (Density of Φ). Let $M \leq N \models T_1, M \neq N$. Then there exists $N' \leq N$, $M \leq N', M \neq N'$, such that for any $c_1, \ldots, c_k \in N'$ there exists $D \in \Phi(M)$ with $(c_1, \ldots, c_k) \in D$.

From (1),(2) it follows that for $\phi(x,y) \in \Phi$ as above, $(\exists^{\infty} x)\psi(x,y,u)\&\phi(x,y)$ is a *definable* property of (y,u) (necessarily equivalent, for some n, to $(\exists^{>n} x)\psi(x,y,u)\&\phi(x,y).$)

We can now formulate the final version of the Boolean-valued theory; we assume now that the equality symbol lies in $L_{!}$.

2.4. Axioms of $T^*_{bool,\infty}$.

- (1) B is a Boolean algebra.
- (2) If $T \models (\forall x)\phi$, then $[\phi] = 1$.
- (3) If $\phi \in L_{!}$, then $[\phi] = 0 \lor [\phi] = 1$.
- (4) For any $a, \phi \mapsto [\phi](a)$ is a Boolean homomorphism.
- (5) (Limit at ∞) $[\neg \phi] \in I$ for all quantifier-free ϕ such that $T_{\infty} \vdash \phi$
- (6) Let ψ be a quantifier-free formula of L_1 such that $(\forall y)(\exists x)\psi \in T$. Then $(\forall y)(\exists x)[\phi(x,y)] = 1$ is an axiom of T_{bool} .
- (7) (local-global) Let $\phi(x, y) \in \Phi$. Assume, for $i = 1, \ldots, n$:

$$T \vdash \theta_i(y, u) \implies (\exists^{\infty} x) \phi(x, y) \& \psi_i(x, y, u)$$

Then the universal closure of the formula:

$$\bigwedge_{i \neq j} b_i \cap b_j = 0 \& \bigwedge [\theta_i(y, u)] \ge b_i \implies (\exists x) \bigwedge_i [\phi(x, y) \& \psi_i(x, y, u)] \ge b_i$$

is an axiom of $T^*_{bool,\infty}$.

Here (1-5) are universal axioms. (6) can be restricted to say that the restriction to L_1 is algebraically closed. Any model (M, B) of (1-5) can be extended - with the same Boolean algebra part! - to a model where (5) is true, by extending the restriction M_1 to L_1 to an algebraically closed structure N_1 in the sense of T_1 , and then extending each expansion M_x of M_1 to an expansion N_x of N_1 in some way. Also, (M, B) can be extended, again without changing B, to a model of (1-5) where a given instance of (7) holds. Namely, let $\phi(x, y) \in \Phi$, and let $D = \phi(x, a)$ for some $a \in M$. Let b_1, \ldots, b_n be a given partition of B, let d be a parameter (for u). Extend M_1 to $N_1 = M_1(c)$ by adding a generic element of D (recall D is strongly minimal when restricted to L_1 .) Then for $x \in X$ with $x \in b_i$, expand N_1 to an extension of M_x in such a way that $\psi_i(c, a, d)$ holds. This shows that $T_{bool,\infty}^*$ is true in any existentially closed model of (1-5).

Proposition 2.5. $T^*_{bool,\infty}$ admits QE to the level of bounded quantifiers.

Proof. By 2.3 (3), it suffices to eliminate quantifiers $(\exists x)\psi(x,y)$ where $\psi(x,y)$ implies $\phi(x,y)$ for some $\phi \in \Phi$. Fix a, d, let $D = \{x : \phi(x,a)\}$. Let b_1, \ldots, b_n be a given partition of B. Let $\psi_i(x, a, d)$ be a formula implying $\phi(x, a)$. We have to show that in a model (M, B) of T_{bool}^* , we can tell, based on the bounded-quantifier type of (a, d) alone, whether there exists x with $[\psi_i(x, a, d)] \ge b_i$. Let θ be a qf formula of T equivalent to $(\exists^{\infty} x)\psi$. If for each $i, [\theta(a, d)] \ge b_i$, then such an xexists by axiom (6). Otherwise for some $i, [\neg \theta(a, d)] \cap b_i = b > 0$. So in M_x (for $x \in b$), there are finitely many solutions c_1, \ldots, c_k to $\psi_i(x, a, d)$. Then there exists x with $\Lambda[\psi_i(x, a, d)] \ge b_i$ iff one of these c_i is a solution of the same. This can be checked using bounded quantifiers.

3. The Algebraic integers

We present the theory of the algebraic integers as a Boolean-valued theory of valued fields, namely the Booleanization of $ACVF_0$ with $ACVF_{0,0}$ at ∞ , over an atomless pointed Boolean algebra.

This description is inspired by [2]; see [3], [1] for other presentations.

Theorem 3.1. The theory of non-trivially valued algebraically closed valued fields admits quantifier-elimination in the language of fields, with a map v into a model of DOA.

This was proved by A. Robinson in the pure field language; the above version is easily deduced, cf. [].

Proposition 3.2. Let R be the ring of algebraic integers, $U = G_m(R)$ the units of R; for $a, b \in \overline{\mathbb{Q}}$, define $a \leq b$ iff $a^{-1}b \in R$; then $Th(K^*/U) = BDOA_{\infty}$.

Proof. For a number field K, let $\underline{\Gamma}_K$ be the group of maps with finite support: $\Omega_K^{fin} \to \mathbb{Q}$. We have a natural map $K^* \to \underline{\Gamma}_K$. The quotient $\underline{\Gamma}_K/K^*$ is a torsion group. ¹ At the limit we obtain a map $\overline{\mathbb{Q}}^* = \lim_K K^* \to \lim_K \underline{\Gamma}_K$. Now $\underline{\Gamma}$ is torsion-free; but $Im(\overline{\mathbb{Q}}^*)$ is divisible; so $\underline{\Gamma}_K/(Im(\overline{\mathbb{Q}}^*) \cap \underline{\Gamma}_K)$ is divisible; as it is also finite, it must be trivial, i.e. $\underline{\Gamma} \subset Im(\overline{\mathbb{Q}}^*)$. Thus the map $\overline{\mathbb{Q}}^* \to \underline{\Gamma}_K$ is surjective; it has kernel U. So $\overline{\mathbb{Q}}^*/U \cong \lim_K \underline{\Gamma}_K$. Now $\lim_K \underline{\Gamma}_K$ can be identified with the group of continuous maps with compact support $\Omega_{\overline{\mathbb{Q}}, fin} \to \mathbb{Q}$.

Let T = ACVF0 be the theory of nontrivially valued algebraically closed valued fields of characteristic 0. Let $T_{\infty} = TVF0$ be the theory of trivially valued fields of char. 0. The language is the language of valued fields, and the sublanguage L_1 is the language of fields (or rings), so that $T_1 = ACF0$.

By Proposition 2.5, $T^*_{bool,\infty}$ is complete up to existential sentences. Let T^*_{max} be tT^*_{bool} along with the sentences asserting that all valuations of number fields are Booleanly possible: [v(p) > 0] > 0, p = 2, 3, ..., and more generally, for any irreducible polynomial F(x) over \mathbb{Z} whose leading coefficient is an integer > 1, $(\exists x)([F(x) = 0\&v(x) > 0] > 0)$.

Let VAL be the space of all valuations v of $\overline{\mathbb{Q}}$ lying above a standard v_p of \mathbb{Q} , or the trivial valuation v_{triv} . A basic open set has the form $\{v : v(a) > v(b)\}$, or $\{v : v(a) = v(b)\}$, where $a, b \in \overline{\mathbb{Q}}$.² So $\overline{\mathbb{Q}}_v$, the field $\overline{\mathbb{Q}}$ with this valuation, is a model of ACVF. Above the trivial valuation of \mathbb{Q} we have a unique point $\infty \in VAL$. Let B be the Boolean algebra of clopen subsets of VAL; let I be the maximal ideal corresponding to the point ∞ . For a quantifier-free ϕ , define:

$$[\phi] = \{ v \in VAL : \bar{\mathbb{Q}}_v \models \phi \}$$

Lemma 3.3. $[\phi]$ is a clopen subset of VAL.

We will refer to this structure as \mathbb{Q} .

Theorem 3.4. $\overline{\mathbb{Q}} \models \widetilde{T^*}_{bool,\infty}$, and so T^*_{max} .

Axioms (1),(2),(3),(4),(5), (6) are clear. (7) follows from Proposition ?? and Rumely's local-global principle:

Let $C \subset \mathbb{A}_n$ be an irreducible curve over K If for all v there exists $c_v = (c_1, \ldots, c_n) \in C(K_v)$ with $v(c_i) \ge 0$ then there exists $c \in C$ such that for all v, $v(c_i) \ge 0$

The truth of this in $\overline{\mathbb{Q}}$ is due to Rumely, with further proofs by Szpiro, Moret-Bailly, Green-Pop-Roquette. (The treatment here directly requires the principle only for curves, but it can be stated for higher-dimensional varieties.)

Proposition 3.5 ([2]). $Th(\mathbb{Z})$ is bi-interpretable with $Th(\mathbb{Q})$

¹This is a basic theorem of algebraic number theory, whose proof is global and will be discussed later.

²This is not the topology we will use when we move to real-valued logic!

3.6. Interpretation of $\widetilde{\mathbb{Z}}$. $\mathbb{O} = \{x : [V(x) \ge 0] = 1\}.$

3.7. Interpretation of T in $\widetilde{\mathbb{Z}}$. The field K is the field of fractions of $\widetilde{\mathbb{Z}}$, interpretable in the usual way.

For $x \in \mathbb{Z}$, let J(x) be the radical ideal $\sqrt{\mathbb{Z}x}$ generated by x. Any quotient of \mathbb{Z} by a nonzero prime ideals is a *locally finite* integral domain (a finite extension of a finite field), hence it is a field. Thus the radical ideal generated by x equals the the *Jacboson radical*, i.e. the intersection of all maximal ideals containing x; it can be defined as $y \in J(x) \iff \mathbb{Z} \models (\forall r)(\exists y)(1 = y(1 - rx))$.

Define an equivalence relation on $\widetilde{\mathbb{Z}}$: xEy iff J(x) = J(y). We can view the quotient, the set I of radical ideals of $\widetilde{\mathbb{Z}}$, as an imaginary sort.

We define operations \cup, \cap on I: $A \cup B = \sqrt{(AB)}, A \cap B = \sqrt{A+B}$.

(We saw earlier another way of interpreting the Boolean algebra, in $\underline{\Gamma}$.)

We remark that there is no difficulty extending $T^*_{bool,\infty}$ so as to include archimedean absolute values, with a similar model companion. However, \mathbb{Q}^a is not a model; and more seriously, the model companion remains purely local, carrying no global constraints or information.

4. UNDECIDABILITY

Assume we have a first order structure where all valuations and absolute values can be discussed. In particular we can define

$$M = \{x : (\forall v)v(x) \ge 0\}$$
$$R = \{x : (\forall v)v(2) \ge 0 \implies v(x) \ge 0\}$$

The interpretation in \mathbb{Q}^a of M, R is: roots of unity, algebraic integers.

Proposition 4.1. Let $K = \mathbb{Q}^a$, viewed as a Boolean valued field-with-absolutevalued, with respect to all valuations and absolute values. Then K is undecidable. In fact \mathbb{N} is a definable subset of K.

The proof is an adaptation of Julia's Robinson undecidability theorem for the totally real algebraic integers. Before beginning the proof, recall that the *archimedean* absolute values of $\overline{\mathbb{Q}}$ have the form $|x| = |\sigma(x)|_{\mathbb{C}}$ where $\sigma : \overline{\mathbb{Q}} \to \mathbb{Q}$ is an automorphism , and $|\cdot|_{\mathbb{C}}$ is the usual complex absolute value. Indeed if $|\cdot|$ is an archimedean absolute value, then the *completion* is a complete normed field, and must be isomorphic to \mathbb{C} . Hence $|x| = |\sigma(x)|_{\mathbb{C}}$ where $\sigma : \overline{\mathbb{Q}} \to \mathbb{C}$ is an embedding , and $|\cdot|_{\mathbb{C}}$ is the usual complex absolute value. Viewing $\overline{\mathbb{Q}}$ as a subfield of \mathbb{C} , we have $\sigma(\overline{\mathbb{Q}}) = \overline{\mathbb{Q}}$, i.e. σ is an automorphism of $\overline{\mathbb{Q}}$.

We will also use that if $a \in R$, then $|a| \ge 1$ for some archimedean $|\cdot|$. Indeed otherwise, $v(a) \ge 0$ for all v, so by product formula v(a) = 0 for all v, in particular |a| = 1 for all (hence some) archimedean $|\cdot|$.

Proof. Claim . There exists a uniformly definable family of finite subsets of M, containing arbitrarily large finite sets.

Proof. Let $S = \{x \in K : (\forall v)(|2|_v > 1 \implies |x|_v > 1)\}$. This is the set of algebraic numbers a such that |a| > 1 for every archimedean absolute value of $\overline{\mathbb{Q}}$. Thus $x \in S$ iff $|\sigma(x)|_{\mathbb{C}} > 1$ for all Galois conjugates $\sigma(x)$ of x. In particular, $\{2, 3, 4, \ldots\} \subset S$. Let $\mu(x)$ be the minimal value of $|\sigma(x)|_{\mathbb{C}}$ over the finitely many Galois conjugates of x; then $\mu(x) > 1$ for $x \in S$.

For $s \in S$, let $M(s) = \{x \in M : (\forall v)(v(x-1) \ge v(1/s))\}.$

For archimedean v, the condition $(v(x-1) \ge v(1/s))$ holds for all $x \in M$ away from a ball around 1, of radius $|1/s|_v$. If $a \in M$, then a is a primitive d'th root of 1 for some d > 1; the Galois conjugates of a are the primitive d'th roots of 1; if the condition holds for *all* archimedean v, then every Galois conjugate of a lies outside the ball around 1 of radius $1/\mu(s)$; in particular, $exp(2\pi i/d)$ lies outside this ball; clearly this is the case for only finitely many d. Hence M(s) is finite.

Consider integers m > 1. We have $m \in S$. For non-archimedian v, we have $v(x-1) \ge 0 = v(1/m)$ so the condition $(v(x-1) \ge v(1/s))$ is satisfied for all $x \in M$. For archimedean v, it holds for all $x \in M$ away from a ball around 1, of radius |1/m|. So $\cup_m M(m) = M$.

Let $\alpha_1, \ldots, \alpha_k$ be distinct elements of M. Let $m = 4kN(\prod_{i < j \le k} (\alpha_i - \alpha_j))$. Here N is the norm to \mathbb{Q} . So $m \in \mathbb{Z}$, m > 4k, and the elements $1 + m\alpha_i$ are relatively prime in R.

By the Chinese remainder theorem there exists $t \in R$ with

$$t = i \mod 1 + m\alpha_i$$

Note that *i* is the unique element with $t = i \mod (1 + m\alpha_i)$ and $3|i| \le |m|$ a.e. Indeed suppose $t = i' \mod (1 + m\alpha_i)$ and $3|i'| \le |m|$ a.e.. Then $i - i' = a(1 + m\alpha_i)$ for some $a \in R$; we can choose an archimedean absolute value with $|a| \ge 1$; then $|i - i'| \ge |1 + m\alpha_i| \ge m - 1$, a contradiction.

This shows that the finite set $\{1, \ldots, k\}$ form part of a uniformly definable family of sets F, each in definable bijection with some set M(s), $s \in S$ - hence itself finite. So $a \in \mathbb{N}$ iff for all $w \in F$, c, if $0 \in w$ and $(\forall x)(x \in w \implies x+1 \in w \lor x = c\})$, then $a \in w$.

4.2. Let K be a field with a family of non-archimedean valuations. Define: $k = \{x : [v(x) \ge 0] = 1\}.$

k is a subring of K.

In the presence of any version of the product formula, $v(x) \ge 0$ implies v(x) = 0so $v(x^{-1}) = 0$. Thus k is a *subfield* of K. 4.3. The function field case. Let F be any field. We will see that in the integral closure of F[t] in $F(t)^{alg}$ - and with a predicate for F - we can uniformly define finite subsets of F. Moreover, this will not be improved in a model companion.

Let M be a field with additional structure, containing a field F and a transcendental element t, and allowing discussion of "all F-valuations".

We can define the *constant* ring C by the formula:

$$(\forall v)(v(x) \ge 0)$$

This formula defines a subring of M. In the presence of the product formula (and this will be our only use of it here), $0 \notin x \in C$ implies: $(\forall v)(v(x) = 0)$; and so $x^{-1}C$. Thus C = k is a field, containing F.

We can also define a ring R (whose $k(t)^{alg}$ -points form the integral closure of k[t]):

$$(\forall v)(v(t) \ge 0 \implies v(x) \ge 0)$$

Note that $t \in R \setminus C$. Thus for some v, v(t) < 0. So $v(t - \alpha) < 0$ for any $\alpha \in k$. Hence $t - \alpha$ is not invertible in R.

Lemma 4.4. Let R be an integral domain, k an infinite subfield, $t \in R$ such that $t - \alpha$ is not invertible for $\alpha \in k$. Then $(R, k, +, \cdot)$ is undecidable.

Proof. Given $r \in R$, let $Z(r) = \{\alpha \in k : r \in (t - \alpha)R\}$. Let $f \in k[t]$ be a polynomial. If $f \in (t-\alpha)R$ and $f, (t-\alpha)$ are relatively prime in $k[t], af+b(t-\alpha) = 1$, then $1 \in (t-\alpha)R$, contradicting the assumption. Thus Z(f) is the set of roots of f in k. Hence $\{Z(r) : r \in R\}$ is a uniformly definable family F of sets including all finite subset of k.

If k contains \mathbb{Z} , one easily sees that \mathbb{N} is definable in R. In general, by saturating, we may assume k has algebraically independent element a, b, b'. Let $C_n = \{1, a, \ldots, a^n\}$; let $D_n = \{x + by + b'z : x, y, z \in C_n\}$; let PD_n be the set of all subsets of D_n . Let E_n be the structure (C_n, D_n, PD_n) , with the partial 'successor' function $x \mapsto ax$ on C_n , the 'membership' relation on $D_n \times PD_n$, and the graph of x + by + b'z on $C_n^3 \times D_n$. Note that x + by + b'z is injective on C_n^3 , so identifies D_n with C_n^3 . With parameters a, b, b', t, we have a uniformly definable family of structures, including all structures E_n . Taking the union over all a, b, b', t we obtain a uniformly definable family of structures F including all the E_n .

Now it is clear that E_n interprets truncated arithmetic. One can find a sentence σ true in the structures E_n , whose logical consequences are recursively inseparable from the set of their negations. But $\{\phi : (\forall A \in F) (A \models \sigma \implies A \models \phi) \text{ separates them. Thus } Th((R, k, +, \cdot)) \text{ cannot be decidable.}$

4.5. What if we take the space of valuations as a sort with individual elements? We immediately see that \mathbb{Q} is definable, as $\{x : (\forall v, v')(v(x) = v'(x))\}$. From a different angle, while questions using *all* valuations are meaningful, a specific

choice of finitely many valuations can be quite arbitrary; for instance, while the isomorphism type of (\mathbb{Q}^a, v) for one valuation v of \mathbb{Q}^a is uniquely determined by $v|\mathbb{Q}$, specifying a second valuation v' involves a large number of arbitrary choices, e.g. when $v|\mathbb{Q} = v'|\mathbb{Q} = v_{\infty}$, the choice of primes q such that \sqrt{q} has the same sign under the complex embeddings corresponding to v, v'.

Problem 4.6. It is not known if the theory of the integral closure of $\mathbb{C}[t]$ in $\mathbb{C}(t)^{alg}$ is decidable. ³ Let us show the first place that behaves differently. Let $K = \mathbb{C}(t)^{alg}$. Let v_{α} be the valuation of $\mathbb{C}(t)$ at $\alpha \in \mathbb{C}$. Let X be the space of valuations of $\mathbb{C}(t)^a$ lying above some v_{α} (but not above v_{∞} !). View K as a Boolean-valued expansion of the theory of fields, as above; $[\phi] = \{v \in X : K_v \models \phi$. Define $\underline{\Gamma}$ as above to be the group of continuous maps with compact support from X into \mathbb{Q} . Then $\underline{\Gamma}$ is interpretable; each element of $\underline{\Gamma}$ can be written as a difference of two terms $v(c)^+$. Now as before, the theory of $\underline{\Gamma}$ is just $DOA_{bool,triv}$. But the image of $v : K^* \to \underline{\Gamma}$ is not surjective now. The quotient is a quotient of the projective limit of all groups $\mathbb{Q} \otimes J(C)$, with J the Jacobian of C, C running through all curves over \mathbb{C} . The quotient factors through the projective limit of all groups up of covering $\mathbb{P}^1(\mathbb{C})$; it is essentially the quotient of the latter by the subgroup of elements supported above the point $\infty \in \mathbb{P}^1$.

(see [3].) This leads to:

Problem 4.7. Study the theory of $(\underline{\Gamma}, +, \max, v(K^*))$ in the language of partially ordered Abelian groups with distinguished subgroup.

References

- A. Prestel, J. Schmid "Existentially closed domains with radical relations" J. Reine Angew. Math., 407 (1990) pp. 178-201
- [2] L. van den Dries, "Elimination theory for the ring of algebraic integers" J. Reine Angew. Math., 388 (1988), pp. 189-205
- [3] L. van den Dries, A. Macintyre, "The logic of Rumely's local-global principle" J. Reine Angew. Math., 407 (1990) pp. 33-56

³(Feb. 2016) It is undecidable.