Boolean-valued logic and the theory of the algebraic integers

1. Booleanization

1.1. Boolean algebras. A compact Hausdorff space X is called zerodimensional or totally disconnected if it has a basis of clopen sets. In this case, the clopen subsets from a Boolean algebra B, and the points of X can be identified with homomorphisms $B \rightarrow\{0,1\}$ (namely x maps b to 1 iff $x \in b$.)

A pointed Boolean algebra is a Boolean algebra with a distinguished maximal ideal, given by a unary predicate.

Definition 1.2. The theory $\widetilde{B A}$ of atomless Boolean algebras: is the theory BA of Boolean algebras along with $1>0$ and

$$
(\forall x \in B)(x>0 \Longrightarrow(\exists y)(x>y>0))
$$

Definition 1.3. The theory $\widetilde{B A}_{\infty}$ of atomless Boolean algebras with distinguished maximal ideal has the language of Boolean algebras with an additional unary predicate I_{∞}; the axioms are $\widehat{B A}$ along with: I_{∞} is a maximal ideal.

A model of $\widetilde{B A}_{\infty}$ corresponds to a totally disconnected compact space without isolated points and with one distinguished point.

Like $\widetilde{B A}, \widetilde{B A}_{\infty}$ is complete, and eliminates quantifiers. It is the modelcompletion of the theory $B A_{\infty}$ of pointed Boolean algebras. The main point to check is the amalgamation property for finite Boolean-algebras-with-distinguished-maximal ideal. Dualizing, this amounts to the co-amalgamation property - existence of fiber products - for finite pointed compact spaces, i.e. for for finite pointed sets. This is straightforward.
1.4. Booleanization. Let T be a theory in a language L. We will assume (without any real loss of generality) that T admits elimination of quantifiers.
1.5. Language of $T_{\text {bool }}$. Let $L_{\text {bool }}$ be a language with the sorts of L and one additional sort B. (For simplicity we will use notation as if L has a single sort K.) On B we have the operations of a Boolean algebra, and the equality relation. In addition, for any formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ of L, we have a function symbol $[\phi]$: $K^{n} \rightarrow B$ with the same variables. We view $[\phi]$ as giving the Boolean truth value of ϕ.

1.6. Axioms of $T_{b o o l}$.

(1) B is a Boolean algebra.
(2) If $T \models(\forall x) \phi$, then $[\phi(a)]=1$.
(3) For any $a, \phi \mapsto[\phi](a)$ is a Boolean homomorphism.
(4) Assume $T \vdash \psi_{i}(y) \Longrightarrow(\exists x) \phi_{i}(x, y), i=1, \ldots, n$. Then

$$
\left(\forall b_{1}, \ldots, b_{n}\right)\left(\bigwedge_{i \neq j} b_{i} \cap b_{j}=0 \& \bigwedge\left[\psi_{i}(y)\right] \geq b_{i} \Longrightarrow(\exists x) \bigwedge_{i}\left[\phi_{i}(x, y)\right] \geq b_{i}\right.
$$

1.7. Discussion. .

(1) (1-3) are universal axioms. (4) contains the AE axioms. For $n=1$ it is a local-global principle: fixing a, if there is no local obstruction (at some point of X) to the existence of b with $\phi(a, b)$, then such a b actually exists. In addition, we have a glueing principle over disjoint b_{1}, \ldots, b_{n}.
(2) As a special case of (4), for any formula $\phi(x)$, then the image of the function $\{b:[(\forall x) \phi] \leq b \leq[(\exists x) \phi]\}$. Assume $T \models(\exists x)(\exists y)(x \neq y)$; applying this for formulas with parameters, namely to $x=a$, we have $B=\{[c=a]: c \in K\}$.
(3) Let $M \models T_{\text {bool }}$. Given a Boolean homomorphism $f: B \rightarrow\{0,1\}$, we can define a structure M_{x} such that $M_{x} \models T$ for all $x \in \operatorname{Hom}(B,\{0,1\})$; the interpretation of ϕ is $x([\phi])$.
(4) If $M \models T_{\text {bool }}$, then M is determined as a structure by B and the values of $[\phi]$ for atomic formulas ϕ. Indeed by (4), $[(\exists x) \phi(x, b)]$ is the least upper bound in B of $\{[\phi(a, b)]: a \in M\}$.

Remark 1.8. When ϕ is a sentence, $[\phi]$ is a new constant symbol in the sort B. We call these the characteristic constants.

The quantifier-elimination axioms of T easily translate via 1.6 (4) to quantifierelimination axioms for $T_{\text {bool }}$:

Lemma 1.9. Assume T eliminates quantifers over some sort K; Then $T_{\text {bool }}$ eliminates K - quantifiers.

If T eliminates all quantifiers, then $T_{b o o l}$ is complete modulo the theory of B in the language of Boolean algebras with additional constants (namely the characteristic constants from 1.8).

Exercise 1.10. Let X be a topological space.
(1) Define the notion of a sheaf of L-structures.
(2) Let $M \models T_{\text {bool }}$, with Boolean algebra B. Let X be the Stone space of B. For $p \in X$, let M_{p} be the two-valued model corresponding to p. Show that this is a sheaf of L-structures, such that every stalk is a model of T.
(3) Conversely, assume X is totally disconnected and A is a sheaf of L structures, such that every stalk M_{p} is a model of T. Let M be the set of global sections. For an L-formula ϕ, define $[\phi]=\left\{p: M_{p} \models \phi\right\}$. Show that this is a model of $T_{\text {bool }}$.

Example 1.11 (lattice-ordered groups.). Let $L=(0,+,<)$ the language of ordered Abelian groups, and let $D O A$ be the theory of divisible ordered Abelian groups. A a divisible ordered Abelian group. Let X be the Stone space of B, and let, $A_{B}=C(X, M)$ be the set of continuous functions $X \rightarrow A$ (with A viewed as discrete.) We define: $f \leq g$ iff $f(x) \leq g(x)$ for all x. Similarly define,+ 0 . Let $\left[\phi\left(a_{1}, \ldots, a_{n}\right)\right]=\left\{x: A \models \phi\left(a_{1}(x), \ldots, a_{n}(x)\right)\right\}$. Then $\left(A_{B}, B\right) \models D O A_{\text {bool }}$.

Exercise 1.12. In particular A_{B} as a partially ordered Abelian group is interpretable in $D O A_{\text {bool }}$. Conversely show that B and the structure $\left(A_{B}, B\right)$ can be interpreted in A_{B}.

Exercise 1.13. $A C F_{\text {bool }}$ is (equivalent to) the theory of algebraically closed commutative rings with no nonzero nilpotent elements. Explain.
1.14. A pointed / locally compact variant. A variant corresponding to a locally compact space Y. We can let $X=Y \cup\{\infty\}$ be the 1-point compactification. We may wish to specify that a specified extension T_{∞} holds at ∞.

Assume now given a specified competion T_{∞} of T is given.
1.15. Axioms of $T_{b o o l, \infty} . L_{b o o l, \infty}$ consists of $L_{b o o l}$ along with a distinguished maximal ideal I_{∞} of B. We let $T_{\text {bool }, \infty}=T_{\text {bool }}+[\neg \phi] \in I$ for all quantifier-free ϕ such that $T_{\infty} \vdash \phi$.

Exercise 1.16. $T_{\text {bool }, \infty}$ eliminates K-quantifiers. It is complete modulo the theory of B in the language of Boolean algebras with a distinguished maximal ideal I and additional constants (namely the characteristic constants from 1.8 (1)).

2. Booleanization relative to a sublanguage

Let T be a theory in a language L, with a distinguished sublanguage $L_{!}$. Let $T!=T \mid L_{!}$.

Assume T admits elimination of quantifiers.
We define the Booleanization relative to $L_{!}$where the formulas of $L_{!}$remain absolute. A model will be a model of $T_{!}$and a sheaf of expansions of M to a model of T, over a compact zero-dimensional space X.

Remark 2.1. When the equality symbol is in L but not in $L_{!}$, an expansion of a model S of $L!$ should be understood to include the interpretation E of equality; i.e. the universe of the expansion is S / E for an appropriate congruence E, rather than S itself. This is the case in the construction of ultraproducts, and in the sheafification over \emptyset considered above. However, in the case of main interest to us equality does lie in $L_{!}$.
2.2. Quantifiers over finite sets. The local-global axiom $2.4(5)$ is usually unreasonable for finite definable sets. For instance $R C F \models(\exists x)\left(x^{2}=2 \& x>0\right)$. Let $L=\mathbb{Q}[\sqrt{2}], X=\operatorname{Hom}(L, \mathbb{R})$, and for a formula ϕ in the language of ordered rings, let $[\phi]=\left\{x \in X: \mathbb{R} \models \phi^{x}\right\}$. In L there exists a square root a of 2 , but $[a>0],[a<0]$ form a partition of unity in the Boolean algebra; in no field extension of L can there exist an element a with $[a>0]=1$.

This will force us to accept bounded quantifers; quantifiers of the form $(\exists x)\left(\phi_{!}(x, y) \& \psi(x, y)\right)$, where ϕ is a formula of $L_{!}$with finitely many solutions in each x (for each y.)

In the case that $T_{!}$is a theory of fields, one can reduce to $(\exists x)(f(x, y)=$ $0 \& \psi(x, y)$), where f is a monic polynomial in one variable x, whose coefficients are definable functions of y. If the coefficients can be taken to be rational functions of y (piecewise in y), we say that the theory is algebraically bounded.

In certain situations, it is possible to reduce all other quantifiers to bounded quantifiers. The idea is due to $A x$, in the setting of pseudo-finite fields. We need to assume that definable sets of T ! decompose into finite ones and irreducible ones, and the irreducible ones carry definable types, given uniformly in the parameters.

For definiteness, we will just consider strongly minimal irreducible sets.
Let us assume a family Φ of formulas $\phi(x, y)$ of $L_{!}$is given, where x, y are tuples of variables. (In practice these will be the absolutely irreducible affine curves.) We will write $D \in \Phi(M)$ if $D=\{x: \phi(x, b)\}$ for some b from M. Assume, in any model $M \models T$ and $D \in \Phi(M)$:

2.3. Properties of irreducible definable sets of $L!$.

(1) (algebraic boundedness) If $F=\{x \in D: \phi(x, c)\}$ is finite, then for some $\psi(x, y) \in L_{!}, \psi(x, c)$ is finite and contains F.
(2) D is strongly minimal in $T_{!}$. I.e. for $\phi \in L_{!},\{x \in D: \phi(x, c)\}$ is finite or cofinite.
(3) (Density of Φ). Let $M \leq N \models T_{!}, M \neq N$. Then there exists $N^{\prime} \leq N$, $M \leq N^{\prime}, M \neq N^{\prime}$, such that for any $c_{1}, \ldots, c_{k} \in N^{\prime}$ there exists $D \in$ $\Phi(M)$ with $\left(c_{1}, \ldots, c_{k}\right) \in D$.
From (1),(2) it follows that for $\phi(x, y) \in \Phi$ as above, $\left(\exists^{\infty} x\right) \psi(x, y, u) \& \phi(x, y)$ is a definable property of (y, u) (necessarily equivalent, for some n, to $\left.\left(\exists^{>n} x\right) \psi(x, y, u) \& \phi(x, y).\right)$

We can now formulate the final version of the Boolean-valued theory; we assume now that the equality symbol lies in $L_{!}$.

2.4. Axioms of $T_{b o o l, \infty}^{*}$.

(1) B is a Boolean algebra.
(2) If $T \models(\forall x) \phi$, then $[\phi]=1$.
(3) If $\phi \in L_{\text {! }}$, then $[\phi]=0 \bigvee[\phi]=1$.
(4) For any $a, \phi \mapsto[\phi](a)$ is a Boolean homomorphism.
(5) (Limit at ∞) $[\neg \phi] \in I$ for all quantifier-free ϕ such that $T_{\infty} \vdash \phi$
(6) Let ψ be a quantifier-free formula of $L_{\text {! }}$ such that $(\forall y)(\exists x) \psi \in T$. Then $(\forall y)(\exists x)[\phi(x, y)]=1$ is an axiom of $T_{\text {bool }}$.
(7) (local-global) Let $\phi(x, y) \in \Phi$. Assume, for $i=1, \ldots, n$:

$$
T \vdash \theta_{i}(y, u) \Longrightarrow\left(\exists^{\infty} x\right) \phi(x, y) \& \psi_{i}(x, y, u)
$$

Then the universal closure of the formula:

$$
\bigwedge_{i \neq j} b_{i} \cap b_{j}=0 \& \bigwedge\left[\theta_{i}(y, u)\right] \geq b_{i} \Longrightarrow(\exists x) \bigwedge_{i}\left[\phi(x, y) \& \psi_{i}(x, y, u)\right] \geq b_{i}
$$

is an axiom of $T_{\text {bool }, \infty}^{*}$.
Here (1-5) are universal axioms. (6) can be restricted to say that the restriction to $L_{!}$is algebraically closed. Any model (M, B) of $(1-5)$ can be extended - with the same Boolean algebra part! - to a model where (5) is true, by extending the restriction $M_{!}$to $L_{!}$to an algebraically closed structure $N_{!}$in the sense of $T_{!}$, and then extending each expansion M_{x} of $M_{!}$to an expansion N_{x} of $N_{!}$in some way. Also, (M, B) can be extended, again without changing B, to a model of (1-5) where a given instance of (7) holds. Namely, let $\phi(x, y) \in \Phi$, and let $D=\phi(x, a)$ for some $a \in M$. Let b_{1}, \ldots, b_{n} be a given partition of B, let d be a parameter (for u). Extend $M_{!}$to $N_{!}=M_{!}(c)$ by adding a generic element of D (recall D is strongly minimal when restricted to $L_{!}$.) Then for $x \in X$ with $x \in b_{i}$, expand $N_{!}$to an extension of M_{x} in such a way that $\psi_{i}(c, a, d)$ holds. This shows that $T_{b o o l, \infty}^{*}$ is true in any existentially closed model of (1-5).
Proposition 2.5. $T_{\text {bool }, \infty}^{*}$ admits $Q E$ to the level of bounded quantifiers.
Proof. By 2.3 (3), it suffices to eliminate quantifiers $(\exists x) \psi(x, y)$ where $\psi(x, y)$ implies $\phi(x, y)$ for some $\phi \in \Phi$. Fix a, d, let $D=\{x: \phi(x, a)\}$. Let b_{1}, \ldots, b_{n} be a given partition of B. Let $\psi_{i}(x, a, d)$ be a formula implying $\phi(x, a)$. We have to show that in a model (M, B) of $T_{\text {bool }}^{*}$, we can tell, based on the bounded-quantifier type of (a, d) alone, whether there exists x with $\left[\psi_{i}(x, a, d)\right] \geq b_{i}$. Let θ be a qf formula of T equivalent to $\left(\exists^{\infty} x\right) \psi$. If for each $i,[\theta(a, d)] \geq b_{i}$, then such an x exists by axiom (6). Otherwise for some $i,[\neg \theta(a, d)] \cap b_{i}=b>0$. So in M_{x} (for $x \in b$), there are finitely many solutions c_{1}, \ldots, c_{k} to $\psi_{i}(x, a, d)$. Then there exists x with $\wedge\left[\psi_{i}(x, a, d)\right] \geq b_{i}$ iff one of these c_{i} is a solution of the same. This can be checked using bounded quantifiers.

3. The Algebraic integers

We present the theory of the algebraic integers as a Boolean-valued theory of valued fields, namely the Booleanization of $A C V F_{0}$ with $A C V F_{0,0}$ at ∞, over an atomless pointed Boolean algebra.

This description is inspired by [2]; see [3], [1] for other presentations.
Theorem 3.1. The theory of non-trivially valued algebraically closed valued fields admits quantifier-elimination in the language of fields, with a map v into a model of $D O A$.

This was proved by A. Robinson in the pure field language; the above version is easily deduced, cf. [|.

Proposition 3.2. Let R be the ring of algebraic integers, $U=G_{m}(R)$ the units of R; for $a, b \in \overline{\mathbb{Q}}$, define $a \leq b$ iff $a^{-1} b \in R$; then $T h\left(K^{*} / U\right)=B D O A_{\infty}$.

Proof. For a number field K, let $\underline{\Gamma}_{K}$ be the group of maps with finite support: $\Omega_{K}^{\text {fin }} \rightarrow \mathbb{Q}$. We have a natural map $K^{*} \rightarrow \underline{\Gamma}_{K}$. The quotient $\underline{\Gamma}_{K} / K^{*}$ is a torsion group. ${ }^{1}$ At the limit we obtain a map $\overline{\mathbb{Q}}^{*}=\lim _{K} K^{*} \rightarrow \lim _{K} \underline{\Gamma}_{K}$. Now $\underline{\Gamma}$ is torsion-free; but $\operatorname{Im}\left(\overline{\mathbb{Q}}^{*}\right)$ is divisible; so $\underline{\Gamma}_{K} /\left(\operatorname{Im}\left(\overline{\mathbb{Q}}^{*}\right) \cap \underline{\Gamma}_{K}\right)$ is divisible; as it is also finite, it must be trivial, i.e. $\underline{\Gamma} \subset \operatorname{Im}\left(\overline{\mathbb{Q}}^{*}\right)$. Thus the map $\overline{\mathbb{Q}}^{*} \rightarrow \underline{\Gamma}_{K}$ is surjective; it has kernel U. So $\overline{\mathbb{Q}}^{*} / U \cong \lim _{K} \underline{\Gamma}_{K}$. Now $\lim _{K} \underline{\Gamma}_{K}$ can be identified with the group of continuous maps with compact support $\Omega_{\overline{\mathbb{Q}}, \text { fin }} \rightarrow \mathbb{Q}$.

Let $T=A C V F 0$ be the theory of nontrivially valued algebraically closed valued fields of characteristic 0 . Let $T_{\infty}=T V F 0$ be the theory of trivially valued fields of char. 0 . The language is the language of valued fields, and the sublanguage $L_{!}$is the language of fields (or rings), so that $T_{!}=A C F 0$.

By Proposition 2.5, $T^{*}{ }_{\text {bool }, \infty}$ is complete up to existential sentences. Let $T_{\max }^{*}$ be $\mathrm{t} T_{\text {bool }}^{*}$ along with the sentences asserting that all valuations of number fields are Booleanly possible: $[v(p)>0]>0, p=2,3, \ldots$, and more generally, for any irreducible polynomial $F(x)$ over \mathbb{Z} whose leading coefficient is an integer >1, $(\exists x)([F(x)=0 \& v(x)>0]>0)$.

Let $V A L$ be the space of all valuations v of $\overline{\mathbb{Q}}$ lying above a standard v_{p} of \mathbb{Q}, or the trivial valuation $v_{\text {triv }}$. A basic open set has the form $\{v: v(a)>v(b)\}$, or $\{v: v(a)=v(b)\}$, where $a, b \in \overline{\mathbb{Q}} \cdot{ }^{2}$ So $\overline{\mathbb{Q}}_{v}$, the field $\overline{\mathbb{Q}}$ with this valuation, is a model of ACVF. Above the trivial valuation of \mathbb{Q} we have a unique point $\infty \in V A L$. Let B be the Boolean algebra of clopen subsets of $V A L$; let I be the maximal ideal corresponding to the point ∞. For a quantifier-free ϕ, define:

$$
[\phi]=\left\{v \in V A L: \overline{\mathbb{Q}}_{v} \models \phi\right\}
$$

Lemma 3.3. $[\phi]$ is a clopen subset of VAL.
We will refer to this structure as $\overline{\mathbb{Q}}$.
Theorem 3.4. $\overline{\mathbb{Q}} \models \widetilde{T^{*}}{ }_{\text {bool }, \infty}$, and so $T_{\text {max }}^{*}$.
Axioms (1),(2),(3),(4),(5), (6) are clear. (7) follows from Proposition ?? and Rumely's local-global principle:

Let $C \subset \mathbb{A}_{n}$ be an irreducible curve over K If for all v there exists $c_{v}=$ $\left.\left(c_{1}, \ldots, c_{n}\right) \in C\left(K_{v}\right)\right)$ with $v\left(c_{i}\right) \geq 0$ then there exists $c \in C$ such that for all v, $v\left(c_{i}\right) \geq 0$

The truth of this in $\overline{\mathbb{Q}}$ is due to Rumely, with further proofs by Szpiro, MoretBailly, Green-Pop-Roquette. (The treatment here directly requires the principle only for curves, but it can be stated for higher-dimensional varieties.)
Proposition $3.5([2]) . \operatorname{Th}(\widetilde{\mathbb{Z}})$ is bi-interpretable with $\operatorname{Th}(\overline{\mathbb{Q}})$

[^0]3.6. Interpretation of $\widetilde{\mathbb{Z}} \cdot \mathcal{O}=\{x:[V(x) \geq 0]=1\}$.
3.7. Interpretation of T in $\widetilde{\mathbb{Z}}$. The field K is the field of fractions of $\widetilde{\mathbb{Z}}$, interpretable in the usual way.

For $x \in \widetilde{\mathbb{Z}}$, let $J(x)$ be the radical ideal $\sqrt{\widetilde{\mathbb{Z}} x}$ generated by x. Any quotient of $\widetilde{\mathbb{Z}}$ by a nonzero prime ideals is a locally finite integral domain (a finite extension of a finite field), hence it is a field. Thus the radical ideal generated by x equals the the Jacboson radical, i.e. the intersection of all maximal ideals containing x; it can be defined as $y \in J(x) \Longleftrightarrow \widetilde{\mathbb{Z}} \models(\forall r)(\exists y)(1=y(1-r x))\}$.

Define an equivalence relation on $\widetilde{\mathbb{Z}}: x E y$ iff $J(x)=J(y)$. We can view the quotient, the set I of radical ideals of $\widetilde{\mathbb{Z}}$, as an imaginary sort.

We define operations \cup, \cap on $I: A \cup B=\sqrt{(} A B), A \cap B=\sqrt{A+B}$.
(We saw earlier another way of interpreting the Boolean algebra, in $\underline{\Gamma}$.)
We remark that there is no difficulty extending $T_{\text {bool }, \infty}^{*}$ so as to include archimedean absolute values, with a similar model companion. However, \mathbb{Q}^{a} is not a model; and more seriously, the model companion remains purely local, carrying no global constraints or information.

4. Undecidability

Assume we have a first order structure where all valuations and absolute values can be discussed. In particular we can define

$$
\begin{gathered}
M=\{x:(\forall v) v(x) \geq 0\} \\
R=\{x:(\forall v) v(2) \geq 0 \Longrightarrow v(x) \geq 0\}
\end{gathered}
$$

The interpretation in \mathbb{Q}^{a} of M, R is: roots of unity, algebraic integers.
Proposition 4.1. Let $K=\mathbb{Q}^{a}$, viewed as a Boolean valued field-with-absolutevalued, with respect to all valuations and absolute values. Then K is undecidable. In fact \mathbb{N} is a definable subset of K.

The proof is an adaptation of Julia's Robinson undecidability theorem for the totally real algebraic integers. Before beginning the proof, recall that the archimedean absolute values of $\overline{\mathbb{Q}}$ have the form $|x|=|\sigma(x)| \mathbb{C}$ where $\sigma: \overline{\mathbb{Q}} \rightarrow \mathbb{Q}$ is an automorphism, and $|\cdot|_{\mathbb{C}}$ is the usual complex absolute value. Indeed if $|\cdot|$ is an archimedean absolute value, then the completion is a complete normed field, and must be isomorphic to \mathbb{C}. Hence $|x|=|\sigma(x)|_{\mathbb{C}}$ where $\sigma: \overline{\mathbb{Q}} \rightarrow \mathbb{C}$ is an embedding, and $|\cdot|_{\mathbb{C}}$ is the usual complex absolute value. Viewing $\overline{\mathbb{Q}}$ as a subfield of \mathbb{C}, we have $\sigma(\overline{\mathbb{Q}})=\overline{\mathbb{Q}}$, i.e. σ is an automorphism of $\overline{\mathbb{Q}}$.

We will also use that if $a \in R$, then $|a| \geq 1$ for some archimedean $|\cdot|$. Indeed otherwise, $v(a) \geq 0$ for all v, so by product formula $v(a)=0$ for all v, in particular $|a|=1$ for all (hence some) archimedean $|\cdot|$.

Proof. Claim . There exists a uniformly definable family of finite subsets of M, containing arbitrarily large finite sets.

Proof. Let $S=\left\{x \in K:(\forall v)\left(|2|_{v}>1 \Longrightarrow|x|_{v}>1\right)\right\}$. This is the set of algebraic numbers a such that $|a|>1$ for every archimedean absolute value of $\overline{\mathbb{Q}}$. Thus $x \in S$ iff $|\sigma(x)|_{\mathbb{C}}>1$ for all Galois conjugates $\sigma(x)$ of x. In particular, $\{2,3,4, \ldots\} \subset S$. Let $\mu(x)$ be the minimal value of $|\sigma(x)|_{\mathbb{C}}$ over the finitely many Galois conjugates of x; then $\mu(x)>1$ for $x \in S$.

For $s \in S$, let $M(s)=\{x \in M:(\forall v)(v(x-1) \geq v(1 / s))\}$.
For archimedean v, the condition $(v(x-1) \geq v(1 / s))$ holds for all $x \in M$ away from a ball around 1 , of radius $|1 / s|_{v}$. If $a \in M$, then a is a primitive d 'th root of 1 for some $d>1$; the Galois conjugates of a are the primitive d 'th roots of 1 ; if the condition holds for all archimedean v, then every Galois conjugate of a lies outside the ball around 1 of radius $1 / \mu(s)$; in particular, $\exp (2 \pi i / d)$ lies outside this ball; clearly this is the case for only finitely many d. Hence $M(s)$ is finite.

Consider integers $m>1$. We have $m \in S$. For non-archimedian v, we have $v(x-1) \geq 0=v(1 / m)$ so the condition $(v(x-1) \geq v(1 / s))$ is satisfied for all $x \in M$. For archimedean v, it holds for all $x \in M$ away from a ball around 1 , of radius $|1 / m|$. So $\cup_{m} M(m)=M$.

Let $\alpha_{1}, \ldots, \alpha_{k}$ be distinct elements of M. Let $m=4 k N\left(\Pi_{i<j \leq k}\left(\alpha_{i}-\alpha_{j}\right)\right)$. Here N is the norm to \mathbb{Q}. So $m \in \mathbb{Z}, m>4 k$, and the elements $1+m \alpha_{i}$ are relatively prime in R.

By the Chinese remainder theorem there exists $t \in R$ with

$$
t=i \quad \bmod \quad 1+m \alpha_{i}
$$

Note that i is the unique element with $t=i \bmod \left(1+m \alpha_{i}\right)$ and $3|i| \leq|m|$ a.e. Indeed suppose $t=i^{\prime} \bmod \left(1+m \alpha_{i}\right)$ and $3\left|i^{\prime}\right| \leq|m|$ a.e.. Then $i-i^{\prime}=a\left(1+m \alpha_{i}\right)$ for some $a \in R$; we can choose an archimedean absolute value with $|a| \geq 1$; then $\left|i-i^{\prime}\right| \geq\left|1+m \alpha_{i}\right| \geq m-1$, a contradiction.

This shows that the finite set $\{1, \ldots, k\}$ form part of a uniformly definable family of sets F, each in definable bijection with some set $M(s), s \in S$ - hence itself finite. So $a \in \mathbb{N}$ iff for all $w \in F, c$, if $0 \in w$ and $(\forall x)(x \in w \Longrightarrow x+1 \in$ $w \vee x=c\}$), then $a \in w$.
4.2. Let K be a field with a family of non-archimedean valuations. Define: $k=\{x:[v(x) \geq 0]=1\}$.
k is a subring of K.
In the presence of any version of the product formula, $v(x) \geq 0$ implies $v(x)=0$ so $v\left(x^{-1}\right)=0$. Thus k is a subfield of K.
4.3. The function field case. Let F be any field. We will see that in the integral closure of $F[t]$ in $F(t)^{\text {alg }}$ - and with a predicate for F - we can uniformly define finite subsets of F. Moreover, this will not be improved in a model companion.

Let M be a field with additional structure, containing a field F and a transcendental element t, and allowing discussion of "all F-valuations".

We can define the constant ring C by the formula:

$$
(\forall v)(v(x) \geq 0)
$$

This formula defines a subring of M. In the presence of the product formula (and this will be our only use of it here), $0 \notin x \in C$ implies: $(\forall v)(v(x)=0)$; and so $x^{-1} C$. Thus $C=k$ is a field, containing F.

We can also define a ring R (whose $k(t)^{\text {alg }}$-points form the integral closure of $k[t])$:

$$
(\forall v)(v(t) \geq 0 \Longrightarrow v(x) \geq 0)
$$

Note that $t \in R \backslash C$. Thus for some $v, v(t)<0$. So $v(t-\alpha)<0$ for any $\alpha \in k$. Hence $t-\alpha$ is not invertible in R.

Lemma 4.4. Let R be an integral domain, k an infinite subfield, $t \in R$ such that $t-\alpha$ is not invertible for $\alpha \in k$. Then $(R, k,+, \cdot)$ is undecidable.

Proof. Given $r \in R$, let $Z(r)=\{\alpha \in k: r \in(t-\alpha) R\}$. Let $f \in k[t]$ be a polynomial. If $f \in(t-\alpha) R$ and $f,(t-\alpha)$ are relatively prime in $k[t], a f+b(t-\alpha)=$ 1 , then $1 \in(t-\alpha) R$, contradicting the assumption. Thus $Z(f)$ is the set of roots of f in k. Hence $\{Z(r): r \in R\}$ is a uniformly definable family F of sets including all finite subset of k.

If k contains \mathbb{Z}, one easily sees that \mathbb{N} is definable in R. In general, by saturating, we may assume k has algebraically independent element a, b, b^{\prime}. Let $C_{n}=\left\{1, a, \ldots, a^{n}\right\}$; let $D_{n}=\left\{x+b y+b^{\prime} z: x, y, z \in C_{n}\right\}$; let $P D_{n}$ be the set of all subsets of D_{n}. Let E_{n} be the structure $\left(C_{n}, D_{n}, P D_{n}\right)$, with the partial 'successor' function $x \mapsto a x$ on C_{n}, the 'membership' relation on $D_{n} \times P D_{n}$, and the graph of $x+b y+b^{\prime} z$ on $C_{n}^{3} \times D_{n}$. Note that $x+b y+b^{\prime} z$ is injective on C_{n}^{3}, so identifies D_{n} with C_{n}^{3}. With parameters a, b, b^{\prime}, t, we have a uniformly definable family of structures, including all structures E_{n}. Taking the union over all a, b, b^{\prime}, t we obtain a uniformly definable family of structures F including all the E_{n}.

Now it is clear that E_{n} interprets truncated arithmetic. One can find a sentence σ true in the structures E_{n}, whose logical consequences are recursively inseparable from the set of their negations. But $\{\phi:(\forall A \in F)(A \models \sigma \Longrightarrow A \models \phi)$ separates them. Thus $\operatorname{Th}((R, k,+, \cdot))$ cannot be decidable.
4.5. What if we take the space of valuations as a sort with individual elements? We immediately see that \mathbb{Q} is definable, as $\left\{x:\left(\forall v, v^{\prime}\right)\left(v(x)=v^{\prime}(x)\right\}\right.$. From a different angle, while questions using all valuations are meaningful, a specific
choice of finitely many valuations can be quite arbitrary; for instance, while the isomorphism type of $\left(\mathbb{Q}^{a}, v\right)$ for one valuation v of \mathbb{Q}^{a} is uniquely determined by $v \mid \mathbb{Q}$, specifying a second valuation v^{\prime} involves a large number of arbitrary choices, e.g. when $v\left|\mathbb{Q}=v^{\prime}\right| \mathbb{Q}=v_{\infty}$, the choice of primes q such that \sqrt{q} has the same sign under the complex embeddings corresponding to v, v^{\prime}.

Problem 4.6. It is not known if the theory of the integral closure of $\mathbb{C}[t]$ in $\mathbb{C}(t)^{\text {alg }}$ is decidable. ${ }^{3}$ Let us show the first place that behaves differently. Let $K=\mathbb{C}(t)^{a l g}$. Let v_{α} be the valuation of $\mathbb{C}(t)$ at $\alpha \in \mathbb{C}$. Let X be the space of valuations of $\mathbb{C}(t)^{a}$ lying above some v_{α} (but not above $v_{\infty}!$). View K as a Boolean-valued expansion of the theory of fields, as above; $[\phi]=\left\{v \in X: K_{v} \models\right.$ ϕ. Define $\underline{\Gamma}$ as above to be the group of continuous maps with compact support from X into \mathbb{Q}. Then $\underline{\Gamma}$ is interpretable; each element of $\underline{\Gamma}$ can be written as a difference of two terms $v(c)^{+}$. Now as before, the theory of $\underline{\Gamma}$ is just $D O A_{\text {bool,triv }}$. But the image of $v: K^{*} \rightarrow \underline{\Gamma}$ is not surjective now. The quotient is a quotient of the projective limit of all groups $\mathbb{Q} \otimes J(C)$, with J the Jacobian of C, C running through all curves over \mathbb{C}. The quotient factors through the projective limit of all groups $\mathbb{Q} \otimes J(C)$, with J the Jacobian of C, C running through a projective system of 'all' curves over \mathbb{C}, covering $\mathbb{P}^{1}(\mathbb{C})$; it is essentially the quotient of the latter by the subgroup of elements supported above the point $\infty \in \mathbb{P}^{1}$.
(see [3].) This leads to:
Problem 4.7. Study the theory of $\left(\underline{\Gamma},+, \max , v\left(K^{*}\right)\right)$ in the language of partially ordered Abelian groups with distinguished subgroup.

References

[1] A. Prestel, J. Schmid "Existentially closed domains with radical relations" J. Reine Angew. Math. , 407 (1990) pp. 178-201
[2] L. van den Dries, "Elimination theory for the ring of algebraic integers" J. Reine Angew. Math. , 388 (1988), pp. 189-205
[3] L. van den Dries, A. Macintyre, "The logic of Rumely's local-global principle" J. Reine Angew. Math. , 407 (1990) pp. 33-56

[^1]
[^0]: ${ }^{1}$ This is a basic theorem of algebraic number theory, whose proof is global and will be discussed later.
 ${ }^{2}$ This is not the topology we will use when we move to real-valued logic!

[^1]: ${ }^{3}$ (Feb. 2016) It is undecidable.

