
Boolean-valued logic and the theory of the algebraic integers

1. Booleanization

1.1. Boolean algebras. A compact Hausdorff space X is called zero-
dimensional or totally disconnected if it has a basis of clopen sets. In this case,
the clopen subsets from a Boolean algebra B, and the points of X can be
identified with homomorphisms B → {0, 1} (namely x maps b to 1 iff x ∈ b.)

A pointed Boolean algebra is a Boolean algebra with a distinguished maximal
ideal, given by a unary predicate.

Definition 1.2. The theory fiBA of atomless Boolean algebras: is the theory BA
of Boolean algebras along with 1 > 0 and

(∀x ∈ B)(x > 0 =⇒ (∃y)(x > y > 0))

Definition 1.3. The theory fiBA∞ of atomless Boolean algebras with distin-
guished maximal ideal has the language of Boolean algebras with an additional
unary predicate I∞; the axioms are fiBA along with: I∞ is a maximal ideal.

A model of fiBA∞ corresponds to a totally disconnected compact space without
isolated points and with one distinguished point.

Like fiBA, fiBA∞ is complete, and eliminates quantifiers. It is the model-
completion of the theory BA∞ of pointed Boolean algebras. The main point
to check is the amalgamation property for finite Boolean-algebras-with-
distinguished-maximal ideal. Dualizing, this amounts to the co-amalgamation
property - existence of fiber products - for finite pointed compact spaces, i.e. for
for finite pointed sets. This is straightforward.

1.4. Booleanization. Let T be a theory in a language L. We will assume (with-
out any real loss of generality) that T admits elimination of quantifiers.

1.5. Language of Tbool. Let Lbool be a language with the sorts of L and one
additional sort B. (For simplicity we will use notation as if L has a single sort
K.) On B we have the operations of a Boolean algebra, and the equality relation.
In addition, for any formula φ(x1, . . . , xn) of L, we have a function symbol [φ] :
Kn → B with the same variables. We view [φ] as giving the Boolean truth value
of φ.

1.6. Axioms of Tbool.
(1) B is a Boolean algebra.
(2) If T |= (∀x)φ, then [φ(a)] = 1.
(3) For any a, φ 7→ [φ](a) is a Boolean homomorphism.
(4) Assume T ` ψi(y) =⇒ (∃x)φi(x, y), i = 1, . . . , n. Then

(∀b1, . . . , bn)(
∧
i 6=j

bi ∩ bj = 0&
∧

[ψi(y)] ≥ bi =⇒ (∃x)
∧
i

[φi(x, y)] ≥ bi

1
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1.7. Discussion. .
(1) (1-3) are universal axioms. (4) contains the AE axioms. For n = 1 it is

a local-global principle: fixing a, if there is no local obstruction (at some
point of X) to the existence of b with φ(a, b), then such a b actually exists.
In addition, we have a glueing principle over disjoint b1, . . . , bn.

(2) As a special case of (4), for any formula φ(x), then the image of the
function {b : [(∀x)φ] ≤ b ≤ [(∃x)φ]}. Assume T |= (∃x)(∃y)(x 6= y);
applying this for formulas with parameters, namely to x = a, we have
B = {[c = a] : c ∈ K}.

(3) Let M |= Tbool . Given a Boolean homomorphism f : B → {0, 1}, we can
define a structure Mx such that Mx |= T for all x ∈ Hom(B, {0, 1}); the
interpretation of φ is x([φ]).

(4) If M |= Tbool , then M is determined as a structure by B and the values of
[φ] for atomic formulas φ. Indeed by (4), [(∃x)φ(x, b)] is the least upper
bound in B of {[φ(a, b)] : a ∈M}.

Remark 1.8. When φ is a sentence, [φ] is a new constant symbol in the sort B.
We call these the characteristic constants.

The quantifier-elimination axioms of T easily translate via 1.6 (4) to quantifier-
elimination axioms for Tbool:

Lemma 1.9. Assume T eliminates quantifers over some sort K; Then Tbool elim-
inates K- quantifiers.

If T eliminates all quantifiers, then Tbool is complete modulo the theory of B
in the language of Boolean algebras with additional constants (namely the char-
acteristic constants from 1.8).

Exercise 1.10. Let X be a topological space.
(1) Define the notion of a sheaf of L-structures.
(2) Let M |= Tbool, with Boolean algebra B. Let X be the Stone space of B.

For p ∈ X, let Mp be the two-valued model corresponding to p. Show
that this is a sheaf of L-structures, such that every stalk is a model of T .

(3) Conversely, assume X is totally disconnected and A is a sheaf of L-
structures, such that every stalk Mp is a model of T . Let M be the
set of global sections. For an L-formula φ, define [φ] = {p : Mp |= φ}.
Show that this is a model of Tbool.

Example 1.11 (lattice-ordered groups.). Let L = (0,+, <) the language of or-
dered Abelian groups, and let DOA be the theory of divisible ordered Abelian
groups. A a divisible ordered Abelian group. Let X be the Stone space of B, and
let , AB = C(X,M) be the set of continuous functions X → A (with A viewed
as discrete.) We define: f ≤ g iff f(x) ≤ g(x) for all x. Similarly define +, 0. Let
[φ(a1, . . . , an)] = {x : A |= φ(a1(x), . . . , an(x))}. Then (AB, B) |= DOAbool.
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Exercise 1.12. In particular AB as a partially ordered Abelian group is inter-
pretable in DOAbool. Conversely show that B and the structure (AB, B) can be
interpreted in AB.

Exercise 1.13. ACFbool is (equivalent to) the theory of algebraically closed com-
mutative rings with no nonzero nilpotent elements. Explain.

1.14. A pointed / locally compact variant. A variant corresponding to a
locally compact space Y . We can letX = Y ∪{∞} be the 1-point compactification.
We may wish to specify that a specified extension T∞ holds at ∞.

Assume now given a specified competion T∞ of T is given.

1.15. Axioms of Tbool,∞. Lbool,∞ consists of Lbool along with a distinguished max-
imal ideal I∞ of B. We let Tbool,∞ = Tbool + [¬φ] ∈ I for all quantifier-free φ such
that T∞ ` φ.

Exercise 1.16. Tbool,∞ eliminatesK-quantifiers. It is complete modulo the theory
of B in the language of Boolean algebras with a distinguished maximal ideal I
and additional constants (namely the characteristic constants from 1.8 (1)).

2. Booleanization relative to a sublanguage

Let T be a theory in a language L, with a distinguished sublanguage L!. Let
T! = T |L!.

Assume T admits elimination of quantifiers.
We define the Booleanization relative to L! where the formulas of L! remain

absolute. A model will be a model of T! and a sheaf of expansions of M to a
model of T , over a compact zero-dimensional space X.

Remark 2.1. When the equality symbol is in L but not in L!, an expansion of a
model S of L! should be understood to include the interpretation E of equality;
i.e. the universe of the expansion is S/E for an appropriate congruence E, rather
than S itself. This is the case in the construction of ultraproducts, and in the
sheafification over ∅ considered above. However, in the case of main interest to
us equality does lie in L!.

2.2. Quantifiers over finite sets. The local-global axiom 2.4(5) is usually un-
reasonable for finite definable sets. For instance RCF |= (∃x)(x2 = 2&x > 0).
Let L = Q[

√
2], X = Hom(L,R), and for a formula φ in the language of ordered

rings, let [φ] = {x ∈ X : R |= φx}. In L there exists a square root a of 2,
but [a > 0], [a < 0] form a partition of unity in the Boolean algebra; in no field
extension of L can there exist an element a with [a > 0] = 1.

This will force us to accept bounded quantifers; quantifiers of the form
(∃x)(φ!(x, y)&ψ(x, y)), where φ is a formula of L! with finitely many solutions in
each x (for each y.)
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In the case that T! is a theory of fields, one can reduce to (∃x)(f(x, y) =
0&ψ(x, y)), where f is a monic polynomial in one variable x, whose coefficients
are definable functions of y. If the coefficients can be taken to be rational functions
of y (piecewise in y), we say that the theory is algebraically bounded.

In certain situations, it is possible to reduce all other quantifiers to bounded
quantifiers. The idea is due to Ax, in the setting of pseudo-finite fields. We need
to assume that definable sets of T! decompose into finite ones and irreducible ones,
and the irreducible ones carry definable types, given uniformly in the parameters.

For definiteness, we will just consider strongly minimal irreducible sets.
Let us assume a family Φ of formulas φ(x, y) of L! is given, where x, y are tuples

of variables. (In practice these will be the absolutely irreducible affine curves.)
We will write D ∈ Φ(M) if D = {x : φ(x, b)} for some b from M . Assume, in any
model M |= T and D ∈ Φ(M):

2.3. Properties of irreducible definable sets of L!.
(1) (algebraic boundedness) If F = {x ∈ D : φ(x, c)} is finite, then for some

ψ(x, y) ∈ L!, ψ(x, c) is finite and contains F .
(2) D is strongly minimal in T!. I.e. for φ ∈ L!, {x ∈ D : φ(x, c)}is finite or

cofinite.
(3) (Density of Φ). Let M ≤ N |= T!, M 6= N . Then there exists N ′ ≤ N ,

M ≤ N ′, M 6= N ′, such that for any c1, . . . , ck ∈ N ′ there exists D ∈
Φ(M) with (c1, . . . , ck) ∈ D.

From (1),(2) it follows that for φ(x, y) ∈ Φ as above, (∃∞x)ψ(x, y, u)&φ(x, y)
is a definable property of (y, u) (necessarily equivalent, for some n, to
(∃>nx)ψ(x, y, u)&φ(x, y).)

We can now formulate the final version of the Boolean-valued theory; we assume
now that the equality symbol lies in L!.

2.4. Axioms of T ∗bool,∞.
(1) B is a Boolean algebra.
(2) If T |= (∀x)φ, then [φ] = 1.
(3) If φ ∈ L!, then [φ] = 0

∨
[φ] = 1.

(4) For any a, φ 7→ [φ](a) is a Boolean homomorphism.
(5) (Limit at ∞) [¬φ] ∈ I for all quantifier-free φ such that T∞ ` φ
(6) Let ψ be a quantifier-free formula of L! such that (∀y)(∃x)ψ ∈ T . Then

(∀y)(∃x)[φ(x, y)] = 1 is an axiom of Tbool.
(7) (local-global) Let φ(x, y) ∈ Φ. Assume, for i = 1, . . . , n:

T ` θi(y, u) =⇒ (∃∞x)φ(x, y)&ψi(x, y, u)

Then the universal closure of the formula:∧
i 6=j

bi ∩ bj = 0&
∧

[θi(y, u)] ≥ bi =⇒ (∃x)
∧
i

[φ(x, y)&ψi(x, y, u)] ≥ bi
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is an axiom of T ∗bool,∞.
Here (1-5) are universal axioms. (6) can be restricted to say that the restriction

to L! is algebraically closed. Any model (M,B) of (1-5) can be extended - with
the same Boolean algebra part! - to a model where (5) is true, by extending the
restriction M! to L! to an algebraically closed structure N! in the sense of T!, and
then extending each expansion Mx of M! to an expansion Nx of N! in some way.
Also, (M,B) can be extended, again without changing B, to a model of (1-5)
where a given instance of (7) holds. Namely, let φ(x, y) ∈ Φ, and let D = φ(x, a)
for some a ∈ M . Let b1, . . . , bn be a given partition of B, let d be a parameter
(for u). Extend M! to N! = M!(c) by adding a generic element of D (recall D is
strongly minimal when restricted to L!.) Then for x ∈ X with x ∈ bi, expand
N! to an extension of Mx in such a way that ψi(c, a, d) holds. This shows that
T ∗bool,∞ is true in any existentially closed model of (1-5).

Proposition 2.5. T ∗bool,∞ admits QE to the level of bounded quantifiers.

Proof. By 2.3 (3), it suffices to eliminate quantifiers (∃x)ψ(x, y) where ψ(x, y)
implies φ(x, y) for some φ ∈ Φ. Fix a, d, let D = {x : φ(x, a)}. Let b1, . . . , bn be
a given partition of B. Let ψi(x, a, d) be a formula implying φ(x, a). We have to
show that in a model (M,B) of T ∗bool, we can tell, based on the bounded-quantifier
type of (a, d) alone, whether there exists x with [ψi(x, a, d)] ≥ bi. Let θ be a qf
formula of T equivalent to (∃∞x)ψ. If for each i, [θ(a, d)] ≥ bi, then such an x
exists by axiom (6). Otherwise for some i, [¬θ(a, d)] ∩ bi = b > 0. So in Mx

(for x ∈ b), there are finitely many solutions c1, . . . , ck to ψi(x, a, d). Then there
exists x with ∧

[ψi(x, a, d)] ≥ bi iff one of these ci is a solution of the same. This
can be checked using bounded quantifiers.

�

3. The algebraic integers

We present the theory of the algebraic integers as a Boolean-valued theory of
valued fields, namely the Booleanization of ACV F0 with ACV F0,0 at∞, over an
atomless pointed Boolean algebra.

This description is inspired by [2]; see [3], [1] for other presentations.

Theorem 3.1. The theory of non-trivially valued algebraically closed valued fields
admits quantifier-elimination in the language of fields, with a map v into a model
of DOA.

This was proved by A. Robinson in the pure field language; the above version
is easily deduced, cf. [].

Proposition 3.2. Let R be the ring of algebraic integers, U = Gm(R) the units
of R; for a, b ∈ Q̄, define a ≤ b iff a−1b ∈ R; then Th(K∗/U) = BDOA∞.
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Proof. For a number field K, let ΓK be the group of maps with finite support:
Ωfin
K → Q. We have a natural map K∗ → ΓK . The quotient ΓK/K

∗ is a torsion
group. 1 At the limit we obtain a map Q̄∗ = limK K

∗ → limK ΓK . Now Γ is
torsion-free; but Im(Q̄∗) is divisible; so ΓK/(Im(Q̄∗) ∩ ΓK) is divisible; as it is
also finite, it must be trivial, i.e. Γ ⊂ Im(Q̄∗). Thus the map Q̄∗ → ΓK is
surjective; it has kernel U . So Q̄∗/U ∼= limK ΓK . Now limK ΓK can be identified
with the group of continuous maps with compact support ΩQ̄,fin → Q. �

Let T = ACV F0 be the theory of nontrivially valued algebraically closed
valued fields of characteristic 0. Let T∞ = TV F0 be the theory of trivially
valued fields of char. 0. The language is the language of valued fields, and the
sublanguage L! is the language of fields (or rings), so that T! = ACF0.

By Proposition 2.5, T ∗bool,∞ is complete up to existential sentences. Let T ∗max
be tT ∗bool along with the sentences asserting that all valuations of number fields
are Booleanly possible: [v(p) > 0] > 0, p = 2, 3, . . ., and more generally, for any
irreducible polynomial F (x) over Z whose leading coefficient is an integer > 1,
(∃x)([F (x) = 0&v(x) > 0] > 0).

Let V AL be the space of all valuations v of Q̄ lying above a standard vp of Q,
or the trivial valuation vtriv. A basic open set has the form {v : v(a) > v(b)},
or {v : v(a) = v(b)}, where a, b ∈ Q̄. 2 So Q̄v, the field Q̄ with this valuation,
is a model of ACVF. Above the trivial valuation of Q we have a unique point
∞ ∈ V AL. Let B be the Boolean algebra of clopen subsets of V AL; let I be the
maximal ideal corresponding to the point ∞. For a quantifier-free φ, define:

[φ] = {v ∈ V AL : Q̄v |= φ}
Lemma 3.3. [φ] is a clopen subset of VAL.

We will refer to this structure as Q̄.

Theorem 3.4. Q̄ |= ›T ∗bool,∞, and so T ∗max.

Axioms (1),(2),(3),(4),(5), (6) are clear. (7) follows from Proposition ?? and
Rumely’s local-global principle:

Let C ⊂ An be an irreducible curve over K If for all v there exists cv =
(c1, . . . , cn) ∈ C(Kv)) with v(ci) ≥ 0 then there exists c ∈ C such that for all v,
v(ci) ≥ 0

The truth of this in Q̄ is due to Rumely, with further proofs by Szpiro, Moret-
Bailly, Green-Pop-Roquette. ( The treatment here directly requires the principle
only for curves, but it can be stated for higher-dimensional varieties.)

Proposition 3.5 ([2]). Th(‹Z) is bi-interpretable with Th(Q̄)

1This is a basic theorem of algebraic number theory, whose proof is global and will be
discussed later.

2This is not the topology we will use when we move to real-valued logic!
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3.6. Interpretation of ‹Z. O = {x : [V (x) ≥ 0] = 1}.

3.7. Interpretation of T in ‹Z. The field K is the field of fractions of ‹Z, inter-
pretable in the usual way.

For x ∈ ‹Z, let J(x) be the radical ideal
»‹Zx generated by x. Any quotient of‹Z by a nonzero prime ideals is a locally finite integral domain (a finite extension

of a finite field), hence it is a field. Thus the radical ideal generated by x equals
the the Jacboson radical, i.e. the intersection of all maximal ideals containing x;
it can be defined as y ∈ J(x) ⇐⇒ ‹Z |= (∀r)(∃y)(1 = y(1− rx))}.

Define an equivalence relation on ‹Z: xEy iff J(x) = J(y). We can view the
quotient, the set I of radical ideals of ‹Z, as an imaginary sort.

We define operations ∪,∩ on I: A ∪B =
»

(AB), A ∩B =
√
A+B.

(We saw earlier another way of interpreting the Boolean algebra, in Γ.)
We remark that there is no difficulty extending T ∗bool,∞ so as to include

archimedean absolute values, with a similar model companion. However, Qa is
not a model; and more seriously, the model companion remains purely local,
carrying no global constraints or information.

4. Undecidability

Assume we have a first order structure where all valuations and absolute values
can be discussed. In particular we can define

M = {x : (∀v)v(x) ≥ 0}

R = {x : (∀v)v(2) ≥ 0 =⇒ v(x) ≥ 0}
The interpretation in Qa of M , R is: roots of unity, algebraic integers.

Proposition 4.1. Let K = Qa, viewed as a Boolean valued field-with-absolute-
valued, with respect to all valuations and absolute values. Then K is undecidable.
In fact N is a definable subset of K.

The proof is an adaptation of Julia’s Robinson undecidability theorem for
the totally real algebraic integers. Before beginning the proof, recall that the
archimedean absolute values of Q̄ have the form |x| = |σ(x)|C where σ : Q̄ → Q
is an automorphism , and | · |C is the usual complex absolute value. Indeed if
| · | is an archimedean absolute value, then the completion is a complete normed
field, and must be isomorphic to C. Hence |x| = |σ(x)|C where σ : Q̄ → C is
an embedding , and | · |C is the usual complex absolute value. Viewing Q̄ as a
subfield of C, we have σ(Q̄) = Q̄, i.e. σ is an automorphism of Q̄.

We will also use that if a ∈ R, then |a| ≥ 1 for some archimedean | · |. Indeed
otherwise, v(a) ≥ 0 for all v, so by product formula v(a) = 0 for all v, in particular
|a| = 1 for all (hence some) archimedean | · |.
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Proof. Claim . There exists a uniformly definable family of finite subsets of
M , containing arbitrarily large finite sets.

Proof. Let S = {x ∈ K : (∀v)(|2|v > 1 =⇒ |x|v > 1)}. This is the set of
algebraic numbers a such that |a| > 1 for every archimedean absolute value of
Q̄. Thus x ∈ S iff |σ(x)|C > 1 for all Galois conjugates σ(x) of x. In particular,
{2, 3, 4, . . .} ⊂ S. Let µ(x) be the minimal value of |σ(x)|C over the finitely many
Galois conjugates of x; then µ(x) > 1 for x ∈ S.

For s ∈ S, let M(s) = {x ∈M : (∀v)(v(x− 1) ≥ v(1/s))}.
For archimedean v, the condition (v(x−1) ≥ v(1/s)) holds for all x ∈M away

from a ball around 1, of radius |1/s|v. If a ∈M , then a is a primitive d’th root of
1 for some d > 1; the Galois conjugates of a are the primitive d’th roots of 1; if
the condition holds for all archimedean v, then every Galois conjugate of a lies
outside the ball around 1 of radius 1/µ(s); in particular, exp(2πi/d) lies outside
this ball; clearly this is the case for only finitely many d. Hence M(s) is finite.

Consider integers m > 1. We have m ∈ S. For non-archimedian v, we have
v(x − 1) ≥ 0 = v(1/m) so the condition (v(x − 1) ≥ v(1/s)) is satisfied for all
x ∈M . For archimedean v, it holds for all x ∈M away from a ball around 1, of
radius |1/m|. So ∪mM(m) = M . �

Let α1, . . . , αk be distinct elements ofM . Let m = 4kN(Πi<j≤k(αi−αj)). Here
N is the norm to Q. So m ∈ Z, m > 4k, and the elements 1 +mαi are relatively
prime in R.

By the Chinese remainder theorem there exists t ∈ R with

t = i mod 1 +mαi

Note that i is the unique element with t = i mod (1 +mαi) and 3|i| ≤ |m| a.e.
Indeed suppose t = i′ mod (1+mαi) and 3|i′| ≤ |m| a.e.. Then i−i′ = a(1+mαi)
for some a ∈ R; we can choose an archimedean absolute value with |a| ≥ 1; then
|i− i′| ≥ |1 +mαi| ≥ m− 1, a contradiction.

This shows that the finite set {1, . . . , k} form part of a uniformly definable
family of sets F , each in definable bijection with some set M(s), s ∈ S - hence
itself finite. So a ∈ N iff for all w ∈ F , c, if 0 ∈ w and (∀x)(x ∈ w =⇒ x + 1 ∈
w ∨ x = c}), then a ∈ w.

�

4.2. Let K be a field with a family of non-archimedean valuations. Define:
k = {x : [v(x) ≥ 0] = 1}.
k is a subring of K.
In the presence of any version of the product formula, v(x) ≥ 0 implies v(x) = 0

so v(x−1) = 0. Thus k is a subfield of K.
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4.3. The function field case. Let F be any field. We will see that in the integral
closure of F [t] in F (t)alg - and with a predicate for F - we can uniformly define
finite subsets of F . Moreover, this will not be improved in a model companion.

Let M be a field with additional structure, containing a field F and a tran-
scendental element t, and allowing discussion of “all F -valuations".

We can define the constant ring C by the formula:

(∀v)(v(x) ≥ 0)

This formula defines a subring ofM . In the presence of the product formula (and
this will be our only use of it here), 0 /∈ x ∈ C implies: (∀v)(v(x) = 0); and so
x−1C. Thus C = k is a field, containing F .

We can also define a ring R (whose k(t)alg-points form the integral closure of
k[t]):

(∀v)(v(t) ≥ 0 =⇒ v(x) ≥ 0)

Note that t ∈ RrC. Thus for some v, v(t) < 0. So v(t−α) < 0 for any α ∈ k.
Hence t− α is not invertible in R.

Lemma 4.4. Let R be an integral domain, k an infinite subfield, t ∈ R such that
t− α is not invertible for α ∈ k. Then (R, k,+, ·) is undecidable.

Proof. Given r ∈ R, let Z(r) = {α ∈ k : r ∈ (t − α)R}. Let f ∈ k[t] be a
polynomial. If f ∈ (t−α)R and f, (t−α) are relatively prime in k[t], af+b(t−α) =
1, then 1 ∈ (t−α)R, contradicting the assumption. Thus Z(f) is the set of roots
of f in k. Hence {Z(r) : r ∈ R} is a uniformly definable family F of sets including
all finite subset of k.

If k contains Z, one easily sees that N is definable in R. In general, by sat-
urating, we may assume k has algebraically independent element a, b, b′. Let
Cn = {1, a, . . . , an}; let Dn = {x + by + b′z : x, y, z ∈ Cn}; let PDn be the set
of all subsets of Dn. Let En be the structure (Cn, Dn, PDn), with the partial
’successor’ function x 7→ ax on Cn, the ’membership’ relation on Dn×PDn, and
the graph of x + by + b′z on C3

n × Dn. Note that x + by + b′z is injective on
C3
n, so identifies Dn with C3

n. With parameters a, b, b′, t, we have a uniformly
definable family of structures, including all structures En. Taking the union over
all a, b, b′, t we obtain a uniformly definable family of structures F including all
the En.

Now it is clear that En interprets truncated arithmetic. One can find a sentence
σ true in the structures En, whose logical consequences are recursively inseparable
from the set of their negations. But {φ : (∀A ∈ F )(A |= σ =⇒ A |= φ) separates
them. Thus Th((R, k,+, ·)) cannot be decidable. �

4.5. What if we take the space of valuations as a sort with individual elements?
We immediately see that Q is definable, as {x : (∀v, v′)(v(x) = v′(x)}. From
a different angle, while questions using all valuations are meaningful, a specific
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choice of finitely many valuations can be quite arbitrary; for instance, while the
isomorphism type of (Qa, v) for one valuation v of Qa is uniquely determined by
v|Q, specifying a second valuation v′ involves a large number of arbitrary choices,
e.g. when v|Q = v′|Q = v∞, the choice of primes q such that √q has the same
sign under the complex embeddings corresponding to v, v′.

Problem 4.6. It is not known if the theory of the integral closure of C[t] in
C(t)alg is decidable. 3 Let us show the first place that behaves differently. Let
K = C(t)alg. Let vα be the valuation of C(t) at α ∈ C. Let X be the space
of valuations of C(t)a lying above some vα (but not above v∞!). View K as a
Boolean-valued expansion of the theory of fields, as above; [φ] = {v ∈ X : Kv |=
φ. Define Γ as above to be the group of continuous maps with compact support
from X into Q. Then Γ is interpretable; each element of Γ can be written as a
difference of two terms v(c)+. Now as before, the theory of Γ is just DOAbool,triv.
But the image of v : K∗ → Γ is not surjective now. The quotient is a quotient of
the projective limit of all groups Q⊗J(C), with J the Jacobian of C, C running
through all curves over C. The quotient factors through the projective limit of
all groups Q⊗J(C), with J the Jacobian of C, C running through a projective
system of ’all’ curves over C, covering P1(C); it is essentially the quotient of the
latter by the subgroup of elements supported above the point ∞ ∈ P1.

(see [3].) This leads to:

Problem 4.7. Study the theory of (Γ,+,max, v(K∗)) in the language of partially
ordered Abelian groups with distinguished subgroup.
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